
September 2006 www.stsc.hill.af.mil 21

The concept of risk – the net negative
impact of the exercise of a vulnerability, con-

sidering both the probability and the impact of
occurrence [1] – is a concept that is hundreds
of years old. Even the concepts of mea-
suring and weighing business risks have
been around for a long time. Insurance
companies calculate risks every day and
use the calculations to set rates for life,
health, and property coverage.

Software development is a constant
balancing act between functional require-
ments, funding, deadlines, limited
resources, risk, and flexibility. Many of the
current major software development life
cycles (SDLCs) treat security simply as just
one more non-functional requirement [2]
and do not cover the topic of information
security or address it in any detail. The
result is often that security remains a non-
functional requirement during the soft-
ware development process. During the
software engineering process, when
resources, budgets, and schedules become
tight, trade-offs must be made as some
requirements must be dropped. This
trade-off process introduces risk into the
software development process. This is not
to imply that security is always an impor-
tant requirement of every software devel-
opment effort. However, if confidentiali-
ty, integrity, and availability of the soft-
ware or the information it stores, trans-
mits, processes, or displays is important,
then security should be considered an
important requirement.

When risk is introduced into the soft-
ware development process where confi-
dentiality, integrity, and availability of the
software or its information are important,
then the result may be that the resulting
software is not as secure as it needs to be.
The General Accounting Office estimates
$38 billion per year [3] in U.S. losses due to
costs associated with computer software
security lapses. How can we resolve this
problem?

One solution is to apply information
security risk assessment practices to the
SDLC. Information security risk assess-

ment is a practice used to ensure that
computing networks and systems are
secure. By applying these methods to the
SDLC, we can actively reduce the number
of known vulnerabilities in software as it
is developed. For those vulnerabilities that
we cannot or choose not to mitigate, we at
least become aware of the risks involved
as software development proceeds. The
remainder of this article will focus on how
to apply simple risk assessment techniques
to the SDLC process.

Assessing Risk Within the
SDLC
There are many different methodologies,
tools, and techniques that can be used to
assess risk. For the purposes of this arti-
cle, we will focus primarily on a simple
qualitative method. Qualitative risk assess-
ments are all about identifying and relat-
ing risks relative to each other. The per-
ceived impact of a loss associated with a
risk is determined rather than the actual
value associated with the loss. Also,
because they are subjective in nature and
do not require the precise knowledge
required by other risk assessment

methodologies, they typically take less
time to conduct.

There are a number of essential ele-
ments of any qualitative risk assessment
process. First, assets, threats, and vulnera-
bilities must be identified. An analysis can
then take place that determines the likeli-
hood of a vulnerability being exploited,
the adverse impact of a vulnerability
being exploited, and, finally, the level of
risk associated with each threat-vulnera-
bility pair. Controls may then be applied
to eliminate or prevent the exercise of
vulnerabilities. From a high-level view, the
relationships between these entities are
outlined in Figure 1. Looking at each of
these elements a little closer, some of the
ways we can apply them in each phase of
the SDLC become visible.

Identifying Threats
A threat is something that is a source of
danger to an asset. Sources of threats may
include (but are not limited to) those list-
ed in Table 1 (see page 22).

The following organizations have pub-
lished lists of potential threats:
• The National Institute of Standards

and Technology (NIST) [4].

Assessing Information Security Risks in the
Software Development Life Cycle

Information is among the most important assets in any organization. Organizations are constantly building more complex
applications to help them accomplish their mission and are entrusting their sensitive information assets to those applications.
But are their information assets secure as they are transmitted, modified, stored, and displayed by those applications? Are
new applications developed in a manner that will keep those sensitive information assets secure? How can we know for cer-
tain? The answers to these questions are all related and involve the process of assessing risk.

Douglas A. Ashbaugh
Software Engineering Services

Allows a threat

to affects the

confidentiality, integrity,

of availability of

Mitigates

(Reduces or

Eliminates)

Control

(p s

p)

Threat

(f

g)

Measuress

probability of

damage too

Risk

(p y

)

Is protected

by

Prevents

exercise

of

Exercises

(Exploits)

C t lControlControl

(id(provides(provides

p t ti)protection)protection)

Th tThreatThreat

(f(Source of(source of

d)Danger)danger)

Ri kRiskRisk

(ibilit(possibility(possibility

of h)of harm)of harm)

Figure 1: Relationships Between Risk Analysis Elements

Software Assurance

22 CROSSTALK The Journal of Defense Software Engineering September 2006

• The SysAdmin, Audit, Network,
Security (SANS) Institute [5].

• The Center for Medicare and Medicaid
Services (CMS) [6].
Many of these lists provide not only

descriptions of threats, but also many
real-world examples, as well as the poten-
tial impact a threat may have on the confi-
dentiality, integrity, and availability of an
asset.

It is important to identify threats
because it is necessary to understand the
potential impact a threat may have upon
an asset. Once this potential impact is
understood, controls that safeguard the
asset from the threat can be identified.
The earlier such controls are identified
within the SDLC, the easier they can be
incorporated into the design.

Identifying Vulnerabilities
A vulnerability refers to a weakness in
design or controls that can be exploited by
a threat to cause harm to an asset.
According to the CERT Coordination
Center, more than 90 percent of software
security vulnerabilities are caused by
known software defect types, and most
software vulnerabilities arise from com-
mon causes. In fact, the top 10 causes
account for about 75 percent of all vul-
nerabilities [7].

One of the easiest ways to identify vul-
nerabilities is to use checklists of common
vulnerabilities developed by government
and other interested agencies and groups.
Another method would be to use applica-
tion code scanning tools. Finally, network
vulnerability scanners can also be used to
find potential security vulnerabilities with-
in an application as it exists in a network
environment. A list of these checklists and
tools is outlined in Table 2.

Identifying Assets
An asset is something of value to an orga-
nization. Assets associated with software
development may include – but are not
limited to – software, information, ser-
vices, processes, functions, business rules,
encryption keys, and methods.

It is important to identify assets as
early as possible. Without knowing what
assets need protection and without under-
standing what may happen when that pro-
tection fails, risk analysis techniques can-
not produce worthwhile results [11].

In the case of identifying assets for
software development, it is important to
look to the business areas that will use the
application being developed and its data.
The end-users and their management are
in the best position to understand what
business information is essential to the
mission and goal of the development
effort. Furthermore, end-users and their
management are in the best position to
identify the business impact of the failure
to protect the critical information.

Assets can also be identified by look-
ing at policy. If an organization has good
enterprise security policies, then assets can
be discovered by a review of those poli-
cies to determine what types of assets the
policy strives to protect. For example, a
data classification policy might require
that all customer information that could
directly identify a customer (i.e. name,
address, customer identification, etc.)
must be considered confidential. If the
application under development were to
use or process any of this information, we
would then consider that information an
asset. Another example might include a
disposal and reuse policy which requires
that media must be thoroughly sanitized
prior to its reuse or disposal. The assets in

this case are hardware and/or reusable
media storage devices and the information
stored on them. Likewise, other policies
may deal with the physical protection of
people, hardware, documentation, build-
ings, and services.

Once information assets have been
discovered, we can then apply analysis
techniques to discover other potential
assets. We can look at use cases, process
flow diagrams, code, and other documen-
tation and find where identified assets are
accessed, read, written, modified, used, or
monitored. Are specific processes, meth-
ods, services, functions, hardware, or indi-
viduals used to modify, display, transmit or
store the assets? Any of these items may
also be assets requiring protection.

Analyzing Risks
Risks occur when a threat exercises a vul-
nerability. The first step in analyzing risks
is to determine the likelihood that a threat-
vulnerability pair will be exercised. This is
accomplished by consulting a likelihood
table such as Table 3. Note that Tables 3-
5 are provided as examples of what likeli-
hood, impact, and risk tables might look
like. Organizations such as NIST, SANS,
CMS and others have developed a wide
variety of tables that may be used in devel-
oping a table to fit your organization’s spe-
cific needs.

Once the likelihood of a threat-vulner-
ability pair being exercised has been deter-
mined, then the impact to the assets iden-
tified if the threat-vulnerability pair is
exercised may be determined according to
Table 4.

Now the risk that a given threat may
cause a specific impact by the exercise of
a vulnerability may be determined. The
risk level is determined by cross-referenc-
ing the likelihood with impact as shown in
Table 5.

The process should be continued until
all of the risks have been assessed. Once
all risks have been assessed, management
can prioritize, evaluate, and implement the
most appropriate controls in order to mit-
igate the risks that have been uncovered.
There are several options and strategies
for mitigating risks including, but not lim-
ited to the following:
• Risk assumption. Choosing to

accept the potential risk as is, or imple-
menting controls to lower the risk to
an acceptable level.

• Risk avoidance. Avoiding the risk by
eliminating the cause or consequence
of the risk.

• Risk limitation. Limiting the adverse
affects of a risk by implementing addi-
tional controls.

Human Threats Technical Threats Environmental Threats

Data entry errors and omissions Misrepresentation of identity Electromagnetic interference

Inadvertent acts and carelessness Unauthorized access to systems Hazardous materials

Impersonation Data contamination Power fluctuations

User abuse and fraud Malicious code Water leaks

Theft, sabotage and vandalism Session takeover Fire

Espionage Natural disasters

Table 1: Threat Sources

Checklist Sources Application Code

Scanning Tools Scanners

The Open Web Application Security

Project (OWASP) [8]

Paros Proxy Nessus

Common Vulnerabilities and Exposures

(CVE) [9]

WebScarab Nmap

National Vulnerability Database (NVD)

[10]

Web Inspect Nikto

Whisker

Table 2: Identifying Vulnerabilities

Likelihood of

Vulnerability being

Exercised

Criteria Used to Determine Likelihood

High • Threat source highly motivated and capable.

• Controls preventing vulnerability ineffective or non-

existent.

Medium • Threat source highly motivated and capable.

• Controls may prevent or at least impede vulnerability.

OR

• Threat source lacks motivation or capability.

• Controls preventing vulnerability ineffective or non-

existent.

Low • Threat source lacks motivation or capability.

• Controls prevent or significantly impede vulnerability.

Table 3: Likelihood Determination [1]

Network Vulnerability

Table 1: Threat Sources

Human Threats Technical Threats Environmental Threats

Data entry errors and omissions Misrepresentation of identity Electromagnetic interference

Inadvertent acts and carelessness Unauthorized access to systems Hazardous materials

Impersonation Data contamination Power fluctuations

User abuse and fraud Malicious code Water leaks

Theft, sabotage and vandalism Session takeover Fire

Espionage Natural disasters

Table 1: Threat Sources

Checklist Sources Application Code

Scanning Tools Scanners

The Open Web Application Security

Project (OWASP) [8]

Paros Proxy Nessus

Common Vulnerabilities and Exposures

(CVE) [9]

WebScarab Nmap

National Vulnerability Database (NVD)

[10]

Web Inspect Nikto

Whisker

Table 2: Identifying Vulnerabilities

Likelihood of

Vulnerability being

Exercised

Criteria Used to Determine Likelihood

High • Threat source highly motivated and capable.

• Controls preventing vulnerability ineffective or non-

existent.

Medium • Threat source highly motivated and capable.

• Controls may prevent or at least impede vulnerability.

OR

• Threat source lacks motivation or capability.

• Controls preventing vulnerability ineffective or non-

existent.

Low • Threat source lacks motivation or capability.

• Controls prevent or significantly impede vulnerability.

Table 3: Likelihood Determination [1]

Network Vulnerability

Table 2: Identifying Vulnerabilities

Assessing Information Security Risks in the Software Development Life Cycle

September 2006 www.stsc.hill.af.mil 23

• Risk transference. Transferring the
risk to compensate for the loss, such as
purchasing insurance.

Assessing Risks Within
the SDLC
It is as important to know when to assess
risks within the SDLC as it is to know how
to assess risks within the SDLC. Risks
should be assessed at the very beginning
of the project and continue with each pro-
gram review. It is also important to assess
risks whenever requirements change and
when the potential for new vulnerabilities
and new threats are introduced.

Example of Risk Assessment
Consider an application for the financial
services industry that requires a lot of per-
sonalized customer information such as
names, employee identification numbers
(which may be social security numbers),
salaries, contributions to retirement plans,
and dates of birth. Customer information
for the application is gathered by a specif-
ic process and stored in a database.
Complex business rules, which are propri-
etary to the organization, are used within
the application to calculate individual
retirement benefits. Furthermore, organi-
zational policy requires that all informa-
tion that could specifically identify an indi-
vidual and all personal financial informa-
tion about an individual must be consid-
ered confidential. In this example, the fol-
lowing would be the assets:
• Customer information specifically

identifying an individual (name, identi-
fication number, date of birth).

• Customer financial information
(salary, contributions to retirement
plans).

• The database where the information is
stored.

• The proprietary business rules.
• The process that gathers the data and

stores it in a database.
The application allows employees of

the organization to modify customer data.
It also allows customers to view, but not
modify or calculate, their retirement bene-
fits online. Therefore, threats to such
assets might include the following:
• Inadvertent, unauthorized modifica-

tion of data (if customer data was
modified or entered by mistake, the
program could calculate incorrect ben-
efits).

• Deliberate unauthorized exposure of
the data (if a malicious person, either
external or internal was able to break
into the application).

• Deliberate unauthorized modification

of the data (if a malicious individual or
process was able to access the data-
base, the data could be destroyed or
corrupted).
Next we need to identify potential vul-

nerabilities. Upon reviewing a list of the
top 10 vulnerabilities from the OWASP
site, we see that Structured Query
Language (SQL) injection is a possible
vulnerability for this application. If valida-
tion rules on input fields do not limit the
ability to input malicious characters, such
as apostrophes, and error-handling rou-
tines generate messages to the user that
are not edited, then the possibility exists
that a malicious user could see the name
of the database and potentially some of
the field names as well. Armed with this
information, a malicious user could poten-
tially alter, destroy, or disclose confidential
customer data.

Let us examine the threat-vulnerability
pair of a deliberate unauthorized modifi-
cation of the data by an employee exercis-
ing the SQL injection vulnerability. To

understand the potential problem, see
Figure 2 (see page 24).

In this example, the application’s con-
trol (code which could prevent the SQL
injection from being exercised) is inade-
quate to protect the customer database
(our asset) from the employee (our threat).
If the threat were to enter the right char-
acter string into the application, the SQL
injection vulnerability would reveal infor-
mation about the customer database
directly to the employee (our threat).
Therefore risk exists that an employee
(threat) could then use that knowledge
(vulnerability) to directly alter, disclose,
and/or destroy data in the customer data-
base (our asset). But how great is this risk?

Based upon our criteria, the likelihood
that this threat-vulnerability pair would be
exercised is rated as medium. The reason
that the likelihood is ranked at medium is
that there are no controls in place to pre-
vent the SQL injection from being exer-
cised; however, the possibility that an
employee (the only ones who can input

Table 2: Identifying Vulnerabilities

Likelihood of

Vulnerability being

Exercised

Criteria Used to Determine Likelihood

High • Threat source highly motivated and capable.

• Controls preventing vulnerability ineffective or non-

existent.

Medium • Threat source highly motivated and capable.

• Controls may prevent or at least impede vulnerability.

OR

• Threat source lacks motivation or capability.

• Controls preventing vulnerability ineffective or non-

existent.

Low • Threat source lacks motivation or capability.

• Controls prevent or significantly impede vulnerability.

Table 3: Likelihood Determination [1]Table 3: Likelihood Determination [12]

Impact Criteria

High • Costly loss of major tangible assets or resources.

• May significantly violate, harm, or impede mission,

reputation, or interest.

• May result in human death or serious injury.

Medium • Costly loss of assets or resources.

•
• May result in human injury.

Low • Loss of some assets or resources.

• Noticeably affect mission, reputation, or interest.

ImpactThreat

Likelihood Low Medium High

Low Low Risk Low Risk Medium Risk

Medium Low Risk Medium Risk Medium Risk

High Medium Risk Medium Risk High Risk

May violate, harm, or impede mission, reputation, or interest.

Table 4: Impact Determination [12]

Impact Criteria

High • Costly loss of major tangible assets or resources.

• May significantly violate, harm, or impede mission,

reputation, or interest.

• May result in human death or serious injury.

Medium • Costly loss of assets or resources.

•
• May result in human injury.

Low • Loss of some assets or resources.

• Noticeably affect mission, reputation, or interest.

ImpactThreat

Likelihood Low Medium High

Low Low Risk Low Risk Medium Risk

Medium Low Risk Medium Risk Medium Risk

High Medium Risk Medium Risk High Risk

May violate, harm, or impede mission, reputation, or interest.

Table 5: Risk Determination

Software Assurance

24 CROSSTALK The Journal of Defense Software Engineering September 2006

data in the application) is highly motivated
and has the knowledge to actively seek out
the database and impact it is negligible.

Next, we need to look at the potential
impact of the threat-vulnerability pair
being exercised. Our threat – the mali-
cious user, through the SQL injection
error – knows the name and fields within
the database which contain confidential
customer information. The malicious user
could find customer salaries and social
security numbers within this database and
place them on the Web, affecting confi-
dentiality. He could alter the information,
affecting integrity. Or he could delete all
of the information, affecting the availabil-
ity of the data for others. In this case, we
have to assume the worst: The malicious
user would reveal the confidential infor-
mation to others. Depending upon the
customer, this could significantly violate
the organization’s reputation and mission.
Therefore, the impact for this threat-vul-

nerability pair is rated high.
Cross-indexing the threat likelihood

with the impact, we see that this is a medi-
um risk. Management can now prioritize
this risk alongside all other risks and deter-
mine what risk mitigation strategies may
be appropriate.

Assume that management has decided
to mitigate this risk by requiring that code
be developed to prevent a SQL injection
attack by requiring validation on all user
inputs and only allowing certain error mes-
sages to reach end-users (see Figure 3).

In this instance, our control (the code
to require proper input validation and
error handling) prevents our threat (the
employee) from exploiting the SQL injec-
tion vulnerability. The employee may
attempt to enter the same character string
as before, but the code that handles input
validation would prevent him from either
entering or executing a command using
that character string. As a result, no infor-

mation about the customer database is
passed to the employee and he is unable to
directly alter, disclose, and/or destroy data
in the customer database.

Conclusion
Organizations continue to entrust precious
assets to software that is developed with the
same vulnerabilities over and over again.
Ninety percent of software security vulner-
abilities are caused by known software
defect types, and the top 10 causes account
for about 75 percent of all vulnerabilities.
How can we reduce these vulnerabilities?

One answer is to apply the practice of
assessing security risks within the SDLC.
By assessing risks – common threats, vul-
nerabilities, and risks can be identified.
Once the risks are known, then steps can
be taken to eliminate or at least mitigate
them. Unknown risks can not be eliminat-
ed or mitigated. That is why it is important
we attempt to detect and analyze risks
within the SDLC.u

References
1. National Institute of Science and

Technology. Risk Management Guide
for Information Technology Systems.
Special Paper 800-30. U.S. Department
of Commerce. July 2002 <www.csrc.
nist.gov/publications/nistpubs/800
-30/sp800-30.pdf>.

2. Petersen, Gunnar. “Phasing Security
Into the SDLC – A Comparison of
Approaches.” Risk Management. 10
Jan. 2006 <http://1raindrop.type
pad.com/1_raindrop/2006/01/
phasing_securit.html>.

3. National Cyber Security Partnership.
Improving Security Across the
Software Development Lifecycle –
Task Force Report. 1 Apr. 2004
<www.cyberpartnership.org/SDLC
FULL.pdf>.

4. National Institute of Standards and
Technology. Database of Threats and
Countermeasures. 1999 <http://csrc.
nist.gov/nissc/1999/proceeding/
papers/o28.pdf>.

5. “@RISK: The Consensus Security
Alert.” SysAdmin, Audit, Network,
Security (SANS) Institute. 5 June 2006
<www.sans.org/>.

6. “CMS Information Systems Threat
Identification Resource.” Centers for
Medicaid and Medicare Services
(CMS). 7 May 2002 <http://csrc.nist.
gov/fasp/FASPDocs/risk-mgmt/
Threat_ID_resource.pdf>.

7. National Cyber Security Partnership.
Improving Security Across the
Software Development Life Cycle –
Task Force Report. 1 Apr. 2004

Revealing

information

about

Insufficient

to prevent

Cods

()

g d

p y e

(t)

Measures

probability of

harm to

Cu

Da

()

Risk
Inadequate

to protect

Uses information to

alter , disclose,

and/or destroy

Reveals

information

to

Exploits

C dCodsCode

(t l)(controls)(controls)

Di tl dDisgruntledDisgruntled

E lEmployeeEmployee

(th t)(Threat(threat)

CCuCus

(t)(asset)(asset)

RiskRiskRisk

Prevents

impact by

Eliminates

Input Validation

& Error Handling

Routines

(controls)

g d

p y e

(t)

Measures

probability of

damage to

Customer

Database

()

Risk Protects

Prevents

information

revealed by

Exploits

Input Validation

& Error Handling

Routines

(controls)

Di tl dDisgruntledDisgruntled

E lEmployeeEmployee

(th t)(Threat(threat)

C tCustomerCustomer

D t bDatabaseDatabase

(t)(asset)(asset)

RiskRiskRisk

Figure 3: Example – Risk Mitigated

Revealing

information

about

Insufficient

to prevent

Cods

()

g d

p y e

(t)

Measures

probability of

harm to

Cu

Da

()

Risk
Inadequate

to protect

Uses information to

alter , disclose,

and/or destroy

Reveals

information

to

Exploits

C dCodsCode

(t l)(controls)(controls)

Di tl dDisgruntledDisgruntled

E lEmployeeEmployee

(th t)(Threat(threat)

CCuCus

(t)(asset)(asset)

Ri kRiskRisk

Prevents

impact by

Eliminates

Input Validation

& Error Handling

Routines

(controls)

g d

p y e

(t)

Measures

probability of

damage to

Customer

Database

()

Risk Protects

Prevents

information

revealed by

Exploits

Input Validation

& Error Handling

Routines

(controls)

Di tl dDisgruntledDisgruntled

E lEmployeeEmployee

(th t)(Threat(threat)

C tCustomerCustomer

D t bDatabaseDatabase

(t)(asset)(asset)

RiskRiskRisk

Figure 2: Example – Risk Exists

Assessing Information Security Risks in the Software Development Life Cycle

<www.cyberpartnership.org/SDLC
FULL.pdf>.

8. Open Web Application Security
Project (OWASP). “Top Ten Most
Critical Web Application Security
Vulnerabilities.” <www.owasp.org/
documentation/topten.html>.

9. The MITRE Corporation. “Common
Vulnerabilities and Exposures.”
<http://cve.mitre.org/>.

10. National Institute of Standards and
Technology. National Vulnerability
Database <http://nvd.nist.gov/>.

11. Lavenhar, Steven, and Gunnar Peter-
sen. “Architectural Risk Assessment.”
Cigital Inc. 2005 <https://buildsec
urityin.us-cert.gov/portal/article/
bestpractices/architectural_risk_
analysis/architectural_risk_assess
ment.xml>.

12. National Institute of Standards and
Technology (NIST). Risk Management
Guide for Information Technology
Systems. Special Paper 800-30, July
2002 <www.csrc.nist.gov/publica
tions/nistpubs/800-30/sp80030.
pdf>.

September 2006 www.stsc.hill.af.mil 25

About the Author

Douglas A. Ashbaugh,
CISSP, is a senior infor-
mation security analyst
for Enterprise Security
Services where he pro-
vides information securi-

ty analysis and remediation, policy and
procedure development, and security
awareness training to various clients.
Ashbaugh has a Bachelor of Science in
Engineering Operations from Iowa State
University. He served eight years in the
U.S. Air Force as an acquisition project
officer and has worked as a software
developer/analyst for the financial ser-
vices industry.

Enterprise Security Services
1508 JF Kennedy DR STE 201
Bellevue, NE 68005
Phone: (402) 292-8660
Fax: (800) 660-5329
E-mail:dashbaugh@sessolutions.com

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG.MGT. ANDTEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEWTWISTONTECHNOLOGY

MAR2006 c PSP/TSP
APR2006 c CMMI
MAY2006 c TRANSFORMING

JUNE2006 c WHY PROJECTS FAIL

JULY2006 c NET-CENTRICITY

AUG2006 c ADA 2005
To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

Dear CrossTalk Editor,
In the March 2006 issue, Yuri Chernak,
in his article Understanding the Logic of
System Testing, outlined a possible
methodological similarity between soft-
ware testing and mathematical logic. I
feel reality of software testing has a
close resemblance to the way that exper-
imental science works.

Some mathematical proofs devel-
oped in theory of software testing con-
cerning the inexistence of a constructive
criterion (i.e. algorithm) to derive the so-
called Ideal Test Suite, (the silver bullet
of system testing), state that the main
goal of testing is restricted to show the
presence of failures because testing can
never completely establish the correct-
ness of an arbitrary software system.

Skipping all formal aspects, these
theoretical results are well summarized:
Program testing can be used to show the
presence of bugs, but never to show
their absence!

Then the methodology of software
testing is well rooted in modus tollens
(Latin: mode that denies). Modus tollens
is the formal name for contrapositive
inference and can also be referred to as
denying the consequent – it is a valid
form of logical argument.

In fact, in experimental sciences, no
number of positive outcomes at the level
of experimental testing can confirm a
theory, but a single counter-instance
shows the scientific theory – from which
the implication is derived – to be false.

Then, falsification with experimental
implementation of modus tollens is just
as essential to software testing as it is to
scientific theories. Indeed, no number of
passed test suites can prove the correct-
ness of a program, but a single failed test
suite shows the program to be incorrect.

Effective testing requires an empiri-
cal frame of reference rather than a the-
oretical one: Software reality is more
about science than it is about computer
science.

Software testing, for mathematical
and theoretical reasons, is firmly set in
the framework of experimental sciences
and we need to see it in this perspective
if we want to increase the comprehen-
sion of methodology and practice of
software testing.

— Francesco Gagliardi
Department of Physical Sciences

University of Naples, Italy
francesco.gagliardi@na.infn.it

LETTER TO THE EDITOR

